

Institute for Natural Materials TechnologyChair of Bioprocess Engineering

Direct Microbial Production of the Green Solvent Ethyl Acetate

Prof. Thomas Walther

What is Ethyl Acetate?

4.5 million tons are produced worldwide every year

Selling price is 1.28 \$/kg (depends on global region)

- Considerable market volume (4.5 Mt/a)

- Selling price of 1.3 \$/kg is ~50-70 % higher than for ethanol.

-> Higher margin than for ethanol reference process.

Current production of ethyl acetate

Current production of ethyl acetate

Current production of ethyl acetate

Microbial synthesis of ethyl acetate

Unlimited growth of *Kluyveromyces marxianus* DSM 5422

Microbial synthesis of ethyl acetate

Iron-limited growth of *K. marxianus* DSM 5422

- Considerable market volume (4.5 Mt/a)
- Selling price of 1.3 \$/kg is ~ 50-70 % higher than for ethanol.

- EthAc can be produced by wild-type yeast.

-> Biomass can be sold as by-product (animal feed)

-> Higher margin than for ethanol reference process.

-> Less constraints on waste treatment.

Ethyl acetate synthesis

Aerobic fermentation with *Kluyveromyces marxianus*

Aerobic cultivation Ethylacetat-Masse Biomasse-Konz. Time Induction by iron limitation Growth

in situ product separation

Time

Stripped ethyl acetate can be condensed from the gas phase

Stripping of ethyl acetate

- Stripping of ethyl acetate
- Low liquid concentration
- Only low product inhibition

Batch process with iron limitation

- Considerable market volume (4.5 Mt/a)

- Selling price of 1.3 \$/kg is ~50-70 % higher than for ethanol.

-> Higher margin than for ethanol reference process.

- EthAc can be produced by wild-type yeast.

-> Biomass can be sold as by-product (animal feed)

-> Less constraints on waste treatment.

- Product does not accumulate in the reactor.

- -> Decoupling of final product concentration from initial sugar concentration.
- -> 2G feedstocks containing dilute sugars can be valorised.

Batch process with iron limitation

in molasses medium at pH 5.1; gassing 1 vvm

- Very high biomass-specific productivity
- 67.4 % of the maximum yield $(Y_{max} = 0.49 \text{ g/g})$
- Very high viability

→ Process is suitable for repeated batch operation

EthAc

10

Time [h]

67.4 %

Ethanol

Repeated batch process with iron limitation

in molasses medium at pH 5.1; gassing 1 vvm

- Continued very high viability
- No interruption of the ethyl acetate synthesis
- Highest ethyl acetate yield to date achieved with wild-type yeasts

- Selling price of 1.3 \$/kg is ~50-70 % higher than for ethanol.

-> Higher margin than for ethanol reference process.

- EthAc can be produced by wild-type yeast.

-> Biomass can be sold as by-product (animal feed)

-> Less constraints on waste treatment.

- Product does not accumulate in the reactor.

- -> Decoupling of final product concentration from initial sugar concentration.
- -> 2G feedstocks containing dilute sugars can be valorised.

- Carbon efficiency is reasonable (0.35 g/g).
- Repeated batch fermentations are possible.

Non-sterile batch process with iron limitation

Growth and product development

in non-sterile molasses medium at pH 5.1; gassing 1 vvm

Non-sterile batch process with iron limitation

Growth and product development

in non-sterile molasses medium at pH 5.1; gassing 1 vvm

- No contamination detectable at the end of the process
- Fermentation possible under non-sterile conditions

Non-sterile batch process with iron limitation

Growth and product development

in non-sterile molasses medium at pH 5.1; gassing 1 vvm

- No contamination detectable at the end of the process
- Fermentation possible under non-sterile conditions

- Considerable market volume (4.5 Mt/a)

- Selling price of 1.3 \$/kg is ~50-70 % higher than for ethanol.

-> Higher margin than for ethanol reference process.

- EthAc can be produced by wild-type yeast.

-> Biomass can be sold as by-product (animal feed)

-> Less constraints on waste treatment.

- Product does not accumulate in the reactor.

- -> Decoupling of final product concentration from initial sugar concentration.
- -> 2G feedstocks containing dilute sugars can be valorised.

- Carbon efficiency is reasonable (0.35 g/g).
- Repeated batch fermentations are possible.
- Fermentation process can be non-sterile.

Computational upscaling and preliminary TEA

Repeated batch process with non-sterile molasses medium

Process optimization of ethyl acetate production

Process optimization of ethyl acetate production

Blue bars: Reference scenario (published)

In silico analysis of different process designs reveals potential for decreasing energy requirements.

Summary & outlook

Repeated batch process with non-sterile molasses medium

Selling price of EthAc is 1.28 \$/kg

(depends on global region)

- Considerable market volume (4.5 Mt/a)

- Selling price of 1.3 \$/kg is ~50-70 % higher than for ethanol.

-> Higher margin than for ethanol reference process.

- EthAc can be produced by wild-type yeast.

-> Biomass can be sold as by-product (animal feed)

-> Less constraints on waste treatment.

- Product does not accumulate in the reactor.

-> Decoupling of final product concentration from initial sugar concentration.

-> 2G feedstocks containing dilute sugars can be valorised.

- Carbon efficiency is reasonable (0.35 g/g).

- Repeated batch fermentations are possible.

- Fermentation process can be non-sterile.

- Energy costs for product recovery are comparatively low.

-> Profitable production process appears to be feasible...at least for waste sugars

Envisaged: Demonstration of technology at TRL6

Sächsische Aufbaubank finances construction of a mobile demo plant (start 01/06/2025)

Objectives:

- Physical connection of all relevant unit operations
- Enabling of long-term repeated-batch fermentations
- Modular design to test different process variants
- Implementation in a mobile container for on-site testing
- Demonstration of technology at TRL 6

Acknowledgements

Dr. Andreas Hoffmann

SPONSORED BY THE

Acknowledgements

Dr. Christian Löser

Dr. Andreas Hoffmann

SPONSORED BY THE

Thank you for your attention

